Relative brain signature: a population-based feature extraction procedure to identify functional biomarkers in the brain of alcoholics
نویسندگان
چکیده
BACKGROUND A novel feature extraction technique, Relative-Brain-Signature (RBS), which characterizes subjects' relationship to populations with distinctive neuronal activity, is presented. The proposed method transforms a set of Electroencephalography's (EEG) time series in high dimensional space to a space of fewer dimensions by projecting time series onto orthogonal subspaces. METHODS We apply our technique to an EEG data set of 77 abstinent alcoholics and 43 control subjects. To characterize subjects' relationship to the alcoholic and control populations, one RBS vector with respect to the alcoholic and one with respect to the control population is constructed. We used the extracted RBS vectors to identify functional biomarkers over the brain of alcoholics. To achieve this goal, the classification algorithm was used to categorize subjects into alcoholics and controls, which resulted in 78% accuracy. RESULTS AND CONCLUSIONS Using the results of the classification, regions with distinctive functionality in alcoholic subjects are detected. These affected regions, with respect to their spatial extent, are frontal, anterior frontal, centro-parietal, parieto-occiptal, and occipital lobes. The distribution of these regions over the scalp indicates that the impact of the alcohol in the cerebral cortex of the alcoholics is spatially diffuse. Our finding suggests that these regions engage more of the right hemisphere relative to the left hemisphere of the alcoholics' brain.
منابع مشابه
EEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملEEG Based Brain Computer Interface Hand Grasp Control: Feature Extraction Method MTCSP
Brain-Computer Interfaces (BCIs) are communication systems, which enable users to send commands to computers by using brain activity only; this activity being generally measured by Electroencephalography (EEG). BCIs are generally designed according to a pattern recognition approach, i.e., by extracting features from EEG signals, and by using a classifier to identify the user’s mental state from...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA review on EEG based brain computer interface systems feature extraction methods
The brain – computer interface (BCI) provides a communicational channel between human and machine. Most of these systems are based on brain activities. Brain Computer-Interfacing is a methodology that provides a way for communication with the outside environment using the brain thoughts. The success of this methodology depends on the selection of methods to process the brain signals in each pha...
متن کاملA Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System
Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015